EQUIVALENT SECOND ORDER CONE PROGRAMS FOR DISTRIBUTION-ALLY ROBUST ZERO-SUM GAMES - CentraleSupélec
Pré-Publication, Document De Travail Année : 2021

EQUIVALENT SECOND ORDER CONE PROGRAMS FOR DISTRIBUTION-ALLY ROBUST ZERO-SUM GAMES

Vikram Vikas
  • Fonction : Auteur
Ayush Agarwal
  • Fonction : Auteur
Navnit Yadav
  • Fonction : Auteur
Abdel Lisser

Résumé

We consider a two-player zero-sum game with random linear constraints. The probability distributions of the random constraint vectors are partially known. The available information with respect to the distribution is based mainly on the first two moments. In this vein, we formulate the random linear constraints as distributionally robust chance constraints. We consider three different types of moments based uncertainty sets. For each uncertainty set, we show that a saddle point equilibrium of the game can be obtained from the optimal solutions of a primal-dual pair of second order cone programs. We illustrate our theoretical results on randomly generated game instances of different sizes.
Fichier principal
Vignette du fichier
DRO_Zeo-sum.pdf (235.86 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03106386 , version 1 (11-01-2021)

Identifiants

  • HAL Id : hal-03106386 , version 1

Citer

Vikram Vikas, Ayush Agarwal, Navnit Yadav, Abdel Lisser. EQUIVALENT SECOND ORDER CONE PROGRAMS FOR DISTRIBUTION-ALLY ROBUST ZERO-SUM GAMES. 2021. ⟨hal-03106386⟩
75 Consultations
118 Téléchargements

Partager

More