Communication Dans Un Congrès Année : 2021

Numerical issues in maximum likelihood parameter estimation for Gaussian process interpolation

Résumé

This article investigates the origin of numerical issues in maximum likelihood parameter estimation for Gaussian process (GP) interpolation and investigates simple but effective strategies for improving commonly used open-source software implementations. This work targets a basic problem but a host of studies, particularly in the literature of Bayesian optimization, rely on off-the-shelf GP implementations. For the conclusions of these studies to be reliable and reproducible, robust GP implementations are critical.
Fichier principal
Vignette du fichier
saferGPMLE-paper.pdf (352.05 Ko) Télécharger le fichier
spetit-gpmle-lod21-slides.pdf (460.33 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03119528 , version 1 (24-01-2021)
hal-03119528 , version 2 (28-07-2021)

Licence

Identifiants

Citer

Subhasish Basak, Sébastien Petit, Julien Bect, Emmanuel Vazquez. Numerical issues in maximum likelihood parameter estimation for Gaussian process interpolation. 7th International Conference on machine Learning, Optimization and Data science (LOD 2021), Oct 2021, Grasmere, United Kingdom. ⟨10.1007/978-3-030-95470-3_9⟩. ⟨hal-03119528v2⟩
405 Consultations
573 Téléchargements

Altmetric

Partager

More