Online estimation of Hilbert-Schmidt operators and application to kernel reconstruction of neural fields - CentraleSupélec
Communication Dans Un Congrès Année : 2022

Online estimation of Hilbert-Schmidt operators and application to kernel reconstruction of neural fields

Résumé

An adaptive observer is designed for online estimation of Hilbert-Schmidt operators from online measurement of the state for some class of nonlinear infinite-dimensional dynamical systems. Convergence is ensured under detectability and persistency of excitation assumptions. The class of systems considered is motivated by an application to kernel reconstruction of neural fields, commonly used to model spatiotemporal activity of neuronal populations. Numerical simulations confirm the relevance of the approach.
Fichier principal
Vignette du fichier
main_v2.pdf (648.68 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03660185 , version 1 (05-05-2022)
hal-03660185 , version 2 (06-10-2022)

Identifiants

Citer

Lucas Brivadis, Antoine Chaillet, Jean Auriol. Online estimation of Hilbert-Schmidt operators and application to kernel reconstruction of neural fields. 61st IEEE Conference on Decision and Control (CDC 2022), Dec 2022, Cancun, Mexico. ⟨10.1109/cdc51059.2022.9992414⟩. ⟨hal-03660185v2⟩
125 Consultations
114 Téléchargements

Altmetric

Partager

More