Accelerated convergence with improved robustness for discrete-time parameter estimation - CentraleSupélec
Article Dans Une Revue Systems and Control Letters Année : 2022

Accelerated convergence with improved robustness for discrete-time parameter estimation

Résumé

The dynamic regressor extension and mixing (DREM) method provides a fixedtime converging parameter estimator for persistently excited regressor under bounded measurement noises. This note aims to develop this approach for cases with weaker excitation and regressor constraints. Several nonlinear estimation schemes with fixed-time convergence rates and improved measurement noise robustness properties are proposed here.
Fichier principal
Vignette du fichier
Accelerated_convergence_SCL_R0.pdf (561.92 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03760746 , version 1 (25-08-2022)

Identifiants

Citer

Stanislav Aranovskiy, Rosane Ushirobira, Denis Efimov, Jian Wang. Accelerated convergence with improved robustness for discrete-time parameter estimation. Systems and Control Letters, 2022, 55 (12), pp.324-329. ⟨10.1016/j.sysconle.2022.105344⟩. ⟨hal-03760746⟩
181 Consultations
118 Téléchargements

Altmetric

Partager

More