Ultralow‐power in‐memory computing based on ferroelectric memcapacitor network
Bobo Tian
(1)
,
Zhuozhuang Xie
(1)
,
Luqiu Chen
(1)
,
Shenglan Hao
(2, 1)
,
Yifei Liu
(1)
,
Guangdi Feng
(1)
,
Xuefeng Liu
(1)
,
Hongbo Liu
(3)
,
Jing Yang
(1)
,
Yuanyuan Zhang
(1)
,
Wei Bai
(1)
,
Tie Lin
(4)
,
Hong Shen
(4)
,
Xiangjian Meng
(4)
,
Ni Zhong
(1)
,
Hui Peng
(1)
,
Fangyu Yue
(1, 5)
,
Xiaodong Tang
(1, 5)
,
Jianlu Wang
(6)
,
Qiuxiang Zhu
(1, 5)
,
Yachin Ivry
(7)
,
Brahim Dkhil
(2)
,
Junhao Chu
(1, 4, 8)
,
Chungang Duan
(1, 9)
1
Key Laboratory of Polar Materials and Devices
2 SPMS - Laboratoire Structures, Propriétés et Modélisation des solides
3 Shanghai University of Engineering Science
4 National Laboratory for Infrared Physics
5 ECNU - East China Normal University [Shangaï]
6 State Key Laboratory of Integrated Chips and Systems [Fudan University]
7 Solid State Institute
8 Institute of Optoelectronics
9 Collaborative Innovation Center of Extreme Optics [Shanxi University]
2 SPMS - Laboratoire Structures, Propriétés et Modélisation des solides
3 Shanghai University of Engineering Science
4 National Laboratory for Infrared Physics
5 ECNU - East China Normal University [Shangaï]
6 State Key Laboratory of Integrated Chips and Systems [Fudan University]
7 Solid State Institute
8 Institute of Optoelectronics
9 Collaborative Innovation Center of Extreme Optics [Shanxi University]
Bobo Tian
- Fonction : Auteur
- PersonId : 777217
- ORCID : 0000-0002-4251-2755
Hui Peng
- Fonction : Auteur
- PersonId : 1271729
- ORCID : 0000-0002-9062-2799
Brahim Dkhil
- Fonction : Auteur
- PersonId : 172266
- IdHAL : brahim-dkhil
- ORCID : 0000-0002-9862-625X
- IdRef : 135228301
Résumé
Analog storage through synaptic weights using conductance in resistive neuromorphic systems and devices inevitably generates harmful heat dissipation. This thermal issue not only limits the energy efficiency but also hampers the very-large-scale and highly complicated hardware integration as in the human brain. Here we demonstrate that the synaptic weights can be simulated by reconfigurable non-volatile capacitances of a ferroelectric-based memcapacitor with ultralow-power consumption. The as-designed metal/ferroelectric/metal/insulator/semiconductor memcapacitor shows distinct 3-bit capacitance states controlled by the ferroelectric domain dynamics. These robust memcapacitive states exhibit uniform maintenance of more than 104 s and well endurance of 109 cycles. In a wired memcapacitor crossbar network hardware, analog vector-matrix multiplication is successfully implemented to classify 9-pixel images by collecting the sum of displacement currents (I = C × dV/dt) in each column, which intrinsically consumes zero energy in memcapacitors themselves. Our work sheds light on an ultralow-power neural hardware based on ferroelectric memcapacitors