Identification and characterization of damaged fiber-reinforced laminates in a Bayesian framework - CentraleSupélec
Article Dans Une Revue International Journal of Applied Electromagnetics and Mechanics Année : 2024

Identification and characterization of damaged fiber-reinforced laminates in a Bayesian framework

Résumé

Non-destructive thermographic testing of damaged composite laminates modeled from the homogenization of fiber-reinforced polymers is a challenge, both because of its underlying complexity and because of the difficulties encountered in the quantification of uncertainties related to the identification and characterization of defects. To provide a rigorous framework that accepts data from different modalities and allows data fusion as well, a Bayesian neural network (BNN) [I. Kononenko, Biological Cybernetics 61(5) (1989), 361–370] with two input streams is proposed, with a focus on local inter-layer delaminations identification and characterization.
Fichier principal
Vignette du fichier
Abstract_ENDE_2023-Noel-etal.pdf (57.25 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04660149 , version 1 (05-09-2024)

Identifiants

Citer

Valentin Noël, Thomas Rodet, Dominique Lesselier. Identification and characterization of damaged fiber-reinforced laminates in a Bayesian framework. International Journal of Applied Electromagnetics and Mechanics, 2024, 74 (4), pp.379-386. ⟨10.3233/JAE-230140⟩. ⟨hal-04660149⟩
65 Consultations
11 Téléchargements

Altmetric

Partager

More