Regularized generalized canonical correlation analysis - CentraleSupélec
Article Dans Une Revue Psychometrika Année : 2011

Regularized generalized canonical correlation analysis

Résumé

Regularized generalized canonical correlation analysis (RGCCA) is a generalization of regularized canonical correlation analysis to three or more sets of variables. It constitutes a general framework for many multi-block data analysis methods. It combines the power of multi-block data analysis methods (maximization of well identified criteria) and the flexibility of PLS path modeling (the researcher decides which blocks are connected and which are not). Searching for a fixed point of the stationary equations related to RGCCA, a new monotonically convergent algorithm, very similar to the PLS algorithm proposed by Herman Wold, is obtained. Finally, a practical example is discussed.
Fichier principal
Vignette du fichier
Tenenhaus_psychometrika_FINAL_29_sept.PDF (407.78 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-00604496 , version 1 (29-06-2011)

Identifiants

  • HAL Id : hal-00604496 , version 1

Citer

Arthur Tenenhaus, Michel Tenenhaus. Regularized generalized canonical correlation analysis. Psychometrika, 2011, 76 (2), pp.257-284. ⟨hal-00604496⟩
298 Consultations
1612 Téléchargements

Partager

More