User Simulation in Dialogue Systems using Inverse Reinforcement Learning - CentraleSupélec
Communication Dans Un Congrès Année : 2011

User Simulation in Dialogue Systems using Inverse Reinforcement Learning

Résumé

Spoken Dialogue Systems (SDS) are man-machine interfaces which use natural language as the medium of interaction. Dialogue corpora collection for the purpose of training and evaluating dialogue systems is an expensive process. User simulators aim at simulating human users in order to generate synthetic data. Existing methods for user simulation mainly focus on generating data with the same statistical consistency as in some reference dialogue corpus. This paper outlines a novel approach for user simulation based on Inverse Reinforcement Learning (IRL). The task of building the user simulator is perceived as a task of imitation learning.
Fichier principal
Vignette du fichier
IS_2011_SCMGFLOP.pdf (221.98 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00652446 , version 1 (15-12-2011)

Identifiants

  • HAL Id : hal-00652446 , version 1

Citer

Senthilkumar Chandramohan, Matthieu Geist, Fabrice Lefèvre, Olivier Pietquin. User Simulation in Dialogue Systems using Inverse Reinforcement Learning. Interspeech 2011, Aug 2011, Florence, Italy. pp.1025-1028. ⟨hal-00652446⟩
536 Consultations
921 Téléchargements

Partager

More