Apprentissage par Renforcement Inverse pour la Simulation d'Utilisateurs dans les Systèmes de Dialogue - CentraleSupélec Access content directly
Conference Papers Year : 2011

Apprentissage par Renforcement Inverse pour la Simulation d'Utilisateurs dans les Systèmes de Dialogue

Abstract

Les systèmes de dialogue sont des interfaces homme-machine qui utilisent le language naturel comme medium d'interaction. La simulation d'utilisateurs a pour objectif de simuler le comportement d'un utilisateur humain afin de générer artificiellement des dialogues. Cette étape est souvent essentielle dans la mesure où collecter et annoter des corpus de dialogues est un processus coûteux, bien que nécessaire à l'utilisation de méthodes d'apprentissage artificiel (tel l'apprentissage par renforcement qui peut être utilisé pour apprendre la politique du gestionnaire de dialogues). Les simulateurs d'utilisateurs existants cherchent essentiellement à produire des comportements d'utilisateurs qui soient statistiquement consistants avec le corpus de dialogues. La contribution de cet article est d'utiliser l'apprentissage par renforcement inverse pour bâtir un nouveau simulateur d'utilisateur. Cette nouvelle approche est illustrée par la simulation du comportement d'un modèle d'utilisateur (artificiel) sur un problème à trois attributs pour un système d'information touristiques. Le comportement du nouveau simulateur d'utilisateur est évalué selon plusieurs métriques (de l'interaction au dialogue).
Fichier principal
Vignette du fichier
JFPDA_2011_SCMGOP.pdf (273.07 Ko) Télécharger le fichier
Origin Files produced by the author(s)
Loading...

Dates and versions

hal-00652753 , version 1 (16-12-2011)

Identifiers

  • HAL Id : hal-00652753 , version 1

Cite

Senthilkumar Chandramohan, Matthieu Geist, Olivier Pietquin. Apprentissage par Renforcement Inverse pour la Simulation d'Utilisateurs dans les Systèmes de Dialogue. JFPDA 2011, Jun 2011, Rouen, France. pp.1-7. ⟨hal-00652753⟩
92 View
178 Download

Share

Gmail Mastodon Facebook X LinkedIn More