FT-GReLoSSS: a Skeletal-Based Approach towards Application Parallelization and Low-Overhead Fault Tolerance
Abstract
FT-GReLoSSS (FTG) is a C++/MPI framework to ease the development of fault-tolerant parallel applications belonging to a SPMD family termed GReLoSSS. The originality of FTG is to rely on the MoLOToF programming model principles to facilitate the addition of an efficient checkpoint-based fault tolerance at the application level. Main features of MoLOToF encompass a structured application development based on fault tolerant "skeletons" and lay emphasis on collaborations. The latter exist between the programmer, the framework and the underlying runtime middleware/environment. Together with the structured approach they contribute into achieving reduced checkpoint sizes, as well as reduced checkpoint and recovery overhead at runtime. This paper introduces the main principles of MoLOToF and the design of the FTG framework. To properly assess the framework's ease of use for a programmer as well as fault tolerance efficiency, a series of benchmarks were conducted up to 128 nodes on a multicore PC cluster. These benchmarks involved an existing parallel financial application for gas storage valuation, originally developed in collaboration with EDF company, and a rewritten version which made use of the FTG framework and its features. Experiments results display low-overhead compared to existing system-level counterparts.
Origin : Files produced by the author(s)
Loading...