Performance Analysis of Robust Detectors for Hyperspectral Imaging - CentraleSupélec
Communication Dans Un Congrès Année : 2013

Performance Analysis of Robust Detectors for Hyperspectral Imaging

Résumé

When accounting for heterogeneity and non-Gaussianity of real hyperspectral data, elliptical distributions provide reliable models for background characterization. Through these assumptions, this paper highlights the fact that robust estimation procedures are an interesting alternative to classical methods and can bring some great improvement to the detection process. The goal of this paper is then not only to recall well-known methodologies of target detection but also to propose ways to extend them for taking into account the heterogeneity and non-Gaussianity of the hyperspectral images.
Fichier principal
Vignette du fichier
JFP2013.pdf (174.67 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-00934285 , version 1 (04-06-2021)

Identifiants

Citer

Joana Frontera-Pons, Jean-Philippe Ovarlez, Frédéric Pascal, Jocelyn Chanussot. Performance Analysis of Robust Detectors for Hyperspectral Imaging. IGARSS 2013 - IEEE International Geoscience and Remote Sensing Symposium, Jul 2013, Melbourne, Australia. pp.1-4, ⟨10.1109/IGARSS.2013.6721348⟩. ⟨hal-00934285⟩
238 Consultations
113 Téléchargements

Altmetric

Partager

More