A variational Bayesian approximation approach via a sparsity enforcing prior in acoustic imaging - CentraleSupélec
Communication Dans Un Congrès Année : 2014

A variational Bayesian approximation approach via a sparsity enforcing prior in acoustic imaging

Résumé

Acoustic imaging is an advanced technique for acoustic source localization and power reconstruction from limited noisy measurements at microphone sensors. To solve this ill-posed inverse problem, the Bayesian inference methods using proper prior knowledge have been widely investigated. In this paper, we propose to use a hierarchical Variational Bayesian Approximation for the robust acoustic imaging. And we explore the Student's-t priors with heavy tails to enforce source sparsity and non-Gaussian noises, so that we can achieve the super spatial resolution and wide dynamic range of source powers. In addition, proposed approach is validated by simulations and real data from wind tunnel in automobile industry.
Fichier principal
Vignette du fichier
WIO2014.pdf (2.63 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01103751 , version 1 (15-01-2015)

Identifiants

Citer

Ning Chu, Ali Mohammad-Djafari, Nicolas Gac, José Picheral. A variational Bayesian approximation approach via a sparsity enforcing prior in acoustic imaging. WIO 2014, Jul 2014, Neuchâtel, Switzerland. pp.1 - 4, ⟨10.1109/WIO.2014.6933297⟩. ⟨hal-01103751⟩
97 Consultations
275 Téléchargements

Altmetric

Partager

More