A hierarchical variational Bayesian approximation approach in acoustic imaging - CentraleSupélec
Communication Dans Un Congrès Année : 2015

A hierarchical variational Bayesian approximation approach in acoustic imaging

Résumé

Acoustic imaging is a powerful technique for acoustic source localization and power reconstruction from limited noisy measurements at microphone sensors. But it inevitably con-fronts a very ill-posed inverse problem which causes unexpected solution uncertainty. Recently, the Bayesian inference methods using sparse priors have been effectively investigated. In this paper, we propose to use a hierarchical variational Bayesian approximation for robust acoustic imaging. And we explore the Student-t priors with heavy tails to enforce source sparsity, and to model non-Gaussian noise respectively. Compared to conventional methods, the proposed approach can achieve the higher spatial resolution and wider dynamic range of source powers for real data from automo-bile wind tunnel.
Fichier principal
Vignette du fichier
Maxent2014-CHU.pdf (2.47 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01103784 , version 1 (15-01-2015)

Identifiants

Citer

Ning Chu, Ali Mohammad-Djafari, Nicolas Gac, José Picheral. A hierarchical variational Bayesian approximation approach in acoustic imaging. 34th International Workshop on Bayesian Inference and Maximun Entropy Methods in Science and Engineering (MaxEnt'14), Sep 2014, Amboise, France. pp.572 - 579, ⟨10.1063/1.4906024⟩. ⟨hal-01103784⟩
141 Consultations
292 Téléchargements

Altmetric

Partager

More