A constrained hybrid Cramér-Rao bound for parameter estimation - CentraleSupélec
Conference Papers Year : 2015

A constrained hybrid Cramér-Rao bound for parameter estimation

Abstract

In statistical signal processing, hybrid parameter estimation refers to the case where the parameters vector to estimate contains both non-random and random parameters. Numerous works have shown the versatility of deterministic constrained Cramér-Rao bound for estimation performance analysis and design of a system of measurement. However in many systems both random and non-random parameters may occur simultaneously. In this communication, we propose a constrained hybrid lower bound which take into account of equality constraint on deterministic parameters. The usefulness of the proposed bound is illustrated with an application to radar Doppler estimation.
Fichier principal
Vignette du fichier
CHCRB.pdf (112.73 Ko) Télécharger le fichier
Origin Files produced by the author(s)
Loading...

Dates and versions

hal-01234924 , version 1 (27-11-2015)

Identifiers

Cite

Chengfang Ren, Julien Le Kernec, Jérôme Galy, Eric Chaumette, Pascal Larzabal, et al.. A constrained hybrid Cramér-Rao bound for parameter estimation. ICASSP: International Conference on Acoustics, Speech and Signal Processing, Apr 2015, Brisbanne, Australia. pp.3472-3476, ⟨10.1109/ICASSP.2015.7178616⟩. ⟨hal-01234924⟩
272 View
298 Download

Altmetric

Share

More