Article Dans Une Revue SIAM Journal on Matrix Analysis and Applications Année : 2017

An explicit formula for the splitting of multiple eigenvalues for nonlinear eigenvalue problems and connections with the linearization for the delay eigenvalue problem

Résumé

We contribute to the perturbation theory of nonlinear eigenvalue problems in three ways. First, we extend the formula for the sensitivity of a simple eigenvalue with respect to a variation of a parameter to the case of multiple nonsemisimple eigenvalues, thereby providing an explicit expression for the leading coefficients of the Puiseux series of the emanating branches of eigenvalues. Second, for a broad class of delay eigenvalue problems, the connection between the finite- dimensional nonlinear eigenvalue problem and an associated infinite-dimensional linear eigenvalue problem is emphasized in the developed perturbation theory. Finally, in contrast to existing work on analyzing multiple eigenvalues of delay systems, we develop all theory in a matrix framework, i.e., without reduction of a problem to the analysis of a scalar characteristic quasi-polynomial.
Fichier principal
Vignette du fichier
MBN-SIAM-2017.pdf (458.83 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01558169 , version 1 (10-01-2018)

Identifiants

Citer

Wim Michiels, Islam Boussaada, Silviu-Iulian Niculescu. An explicit formula for the splitting of multiple eigenvalues for nonlinear eigenvalue problems and connections with the linearization for the delay eigenvalue problem. SIAM Journal on Matrix Analysis and Applications, 2017, 38 (2), pp.599-620. ⟨10.1137/16M107774X⟩. ⟨hal-01558169⟩
297 Consultations
1444 Téléchargements

Altmetric

Partager

More