An explicit formula for the splitting of multiple eigenvalues for nonlinear eigenvalue problems and connections with the linearization for the delay eigenvalue problem
Résumé
We contribute to the perturbation theory of nonlinear eigenvalue problems in three ways. First, we extend the formula for the sensitivity of a simple eigenvalue with respect to a variation of a parameter to the case of multiple nonsemisimple eigenvalues, thereby providing an explicit expression for the leading coefficients of the Puiseux series of the emanating branches of eigenvalues. Second, for a broad class of delay eigenvalue problems, the connection between the finite- dimensional nonlinear eigenvalue problem and an associated infinite-dimensional linear eigenvalue problem is emphasized in the developed perturbation theory. Finally, in contrast to existing work on analyzing multiple eigenvalues of delay systems, we develop all theory in a matrix framework, i.e., without reduction of a problem to the analysis of a scalar characteristic quasi-polynomial.
Origine | Fichiers produits par l'(les) auteur(s) |
---|
Loading...