Distributed Non-Asymptotic Confidence Region Computation over Sensor Networks - CentraleSupélec
Article Dans Une Revue IEEE Transactions on Signal and Information Processing over Networks Année : 2017

Distributed Non-Asymptotic Confidence Region Computation over Sensor Networks

Résumé

This paper addresses the distributed computation of exact, non-asymptotic confidence regions for the parameter estimation of a linear model from observations at different nodes of a network of sensors. If a central unit gathers all the data, the sign perturbed sums (SPS) method proposed by Csáji et al. can be used to define guaranteed confidence regions with prescribed confidence levels from a finite number of measurements. SPS requires only mild assumptions on the measurement noise. This work proposes distributed solutions, based on SPS and suited to a wide variety of sensor networks, for distributed in-node evaluation of non-asymptotic confidence regions as defined by SPS. More specifically, a Tagged and Aggregated Sum information diffusion algorithm is introduced, which exploits the specificities of SPS to avoid flooding the network with all measurements provided by the sensors. The performance of the proposed solutions is evaluated in terms of required traffic load, both analytically and experimentally on different network topologies. The best information diffusion strategy among nodes depends on how structured the network is.
Fichier principal
Vignette du fichier
Single_v11.pdf (359.32 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01576604 , version 1 (23-08-2017)

Identifiants

Citer

Vincenzo Zambianchi, Francesca Bassi, Alex Calisti, Davide Dardari, Michel Kieffer, et al.. Distributed Non-Asymptotic Confidence Region Computation over Sensor Networks. IEEE Transactions on Signal and Information Processing over Networks, 2017, 4 (2), pp.308 - 324. ⟨10.1109/TSIPN.2017.2695403⟩. ⟨hal-01576604⟩
190 Consultations
239 Téléchargements

Altmetric

Partager

More