New model order selection in large dimension regime for complex elliptically symmetric noise - CentraleSupélec
Communication Dans Un Congrès Année : 2017

New model order selection in large dimension regime for complex elliptically symmetric noise

Résumé

This paper presents a new model order selection technique for signal processing applications related to source localization or subspace orthogonal projection techniques in large dimensional regime (Random Matrix Theory) when the noise environment is Complex Elliptically Symmetric (CES) distributed, with unknown scatter matrix. The proposed method consists first in estimating the Toeplitz structure of the background covariance matrix. In a second step, after a whitening process, the eigenvalues distribution of any Maronna's M-estimators is exploited, leading to the order selection. Simulations made on different kinds of CES noise as well as analysis of real hyperspectral images demonstrate the superiority of the proposed technique compared to those of Akaike Information Criterion and the Minimum Description Length.
Fichier principal
Vignette du fichier
New model order selection in large dimension regime for complex elliptically symmetric noise.pdf (297.26 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01692642 , version 1 (27-03-2020)

Identifiants

Citer

Eugénie Terreaux, Jean-Philippe Ovarlez, Frédéric Pascal. New model order selection in large dimension regime for complex elliptically symmetric noise. 25th European Signal Processing Conference (EUSIPCO 2017), Aug 2017, Kos Island, Greece. ⟨10.23919/EUSIPCO.2017.8081376⟩. ⟨hal-01692642⟩
167 Consultations
140 Téléchargements

Altmetric

Partager

More