Learning Semi-Supervised Anonymized Representations by Mutual Information - CentraleSupélec
Communication Dans Un Congrès Année : 2020

Learning Semi-Supervised Anonymized Representations by Mutual Information

Résumé

This paper addresses the problem of removing from a set of data (here images) a given private information, while still allowing other utilities on the processed data. This is obtained by training concurrently a GAN-like discriminator and an autoencoder. The optimization of the resulting structure involves a novel surrogate of the misclassification probability of the information to remove. Several examples are given, demonstrating that a good level of privacy can be obtained on images at the cost of the introduction of very small artifacts.
Fichier principal
Vignette du fichier
ICASSP.pdf (1.16 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-02572273 , version 1 (13-05-2020)

Identifiants

  • HAL Id : hal-02572273 , version 1

Citer

C. Feutry, Pablo Piantanida, Pierre Duhamel. Learning Semi-Supervised Anonymized Representations by Mutual Information. 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP 2020), May 2020, Barcelone, Spain. pp.3467-3471. ⟨hal-02572273⟩
59 Consultations
292 Téléchargements

Partager

More