Communication Dans Un Congrès Année : 2020

Efficient Construction of Neural Networks Lyapunov Functions with Domain Of Attraction Maximization

Résumé

This work deals with a new method for computing Lyapunov functions represented by neural networks for autonomous nonlinear systems. Based on the Lyapunov theory and the notion of domain of attraction, we propose an optimization method for determining a Lyapunov function modelled by a neural network while maximizing the domain of attraction. The potential of the proposed method is demonstrated by simulation examples.
Fichier principal
Vignette du fichier
ICINCO_2020_97 (2).pdf (481.37 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02860869 , version 1 (08-06-2020)

Identifiants

Citer

Benjamin Bocquillon, Philippe Feyel, Guillaume Sandou, Pedro Rodriguez-Ayerbe. Efficient Construction of Neural Networks Lyapunov Functions with Domain Of Attraction Maximization. 17th International Conference on Informatics in Control, Automation and Robotics (ICINCO), Jul 2020, Lieusaint, France. ⟨10.5220/0009883401740180⟩. ⟨hal-02860869⟩
128 Consultations
667 Téléchargements

Altmetric

Partager

More