Learning Semi-Supervised Anonymized Representations by Mutual Information - CentraleSupélec
Communication Dans Un Congrès Année : 2020

Learning Semi-Supervised Anonymized Representations by Mutual Information

Résumé

This paper addresses the problem of removing from a set of data (here images) a given private information, while still allowing other utilities on the processed data. This is obtained by training concurrently a GAN-like discriminator and an autoencoder. The optimization of the resulting structure involves a novel surrogate of the misclassification probability of the information to remove. Several examples are given, demonstrating that a good level of privacy can be obtained on images at the cost of the introduction of very small artifacts.
Fichier principal
Vignette du fichier
Template.pdf (786.14 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03351090 , version 1 (21-09-2021)
hal-03351090 , version 2 (19-01-2022)
hal-03351090 , version 3 (22-06-2023)

Licence

Domaine public

Identifiants

Citer

Clément Feutry, Pablo Piantanida, Pierre Duhamel. Learning Semi-Supervised Anonymized Representations by Mutual Information. ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), May 2020, Barcelona, Spain, France. pp.3467-3471, ⟨10.1109/ICASSP40776.2020.9053379⟩. ⟨hal-03351090v2⟩

Collections

GS-ENGINEERING
76 Consultations
121 Téléchargements

Altmetric

Partager

More