Learning Semi-Supervised Anonymized Representations by Mutual Information
Résumé
This paper addresses the problem of removing from a set of data (here images) a given private information, while still allowing other utilities on the processed data. This is obtained by training concurrently a GAN-like discriminator and an autoencoder. The optimization of the resulting structure involves a novel surrogate of the misclassification probability of the information to remove. Several examples are given, demonstrating that a good level of privacy can be obtained on images at the cost of the introduction of very small artifacts.
Fichier principal
LEARNING SEMI-SUPERVISED ANONYMIZED REPRESENTATIONS BY MUTUAL INFORMATION (1).pdf (1.32 Mo)
Télécharger le fichier
Origine | Fichiers produits par l'(les) auteur(s) |
---|