Deep Neural Network Feasibility Using Analog Spiking Neurons
Résumé
Novel non-Von-Neumann solutions have raised based on artificial intelligence (AI) such as the neuromorphic spiking processors in either analog or digital domain. This paper proposes to study the deep neural network feasibility using ultra-low-power eNeuron. The trade-offs in terms of deep learning capabilities and energy efficiency are highlighted. A linear fit model is found in the region of high energy efficiency of neuromorphic components. Thus, deep learning and energy efficiency mutually exclusive if those neuromorphic components are used.
Origine | Fichiers produits par l'(les) auteur(s) |
---|