Deep Neural Network Feasibility Using Analog Spiking Neurons - CentraleSupélec
Communication Dans Un Congrès Année : 2022

Deep Neural Network Feasibility Using Analog Spiking Neurons

Résumé

Novel non-Von-Neumann solutions have raised based on artificial intelligence (AI) such as the neuromorphic spiking processors in either analog or digital domain. This paper proposes to study the deep neural network feasibility using ultra-low-power eNeuron. The trade-offs in terms of deep learning capabilities and energy efficiency are highlighted. A linear fit model is found in the region of high energy efficiency of neuromorphic components. Thus, deep learning and energy efficiency mutually exclusive if those neuromorphic components are used.
Fichier principal
Vignette du fichier
BW_SBCCI_Thomas_Soupizet_v1.pdf (333.23 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03689837 , version 1 (07-10-2022)

Identifiants

Citer

Thomas Soupizet, Zalfa Jouni, Joao Frischenbruder Sulzbach, A. Benlarbi-Delai, Pietro Maris Ferreira. Deep Neural Network Feasibility Using Analog Spiking Neurons. 35th SBC/SBMicro/IEEE/ACM Symposium on Integrated Circuits and Systems Design (SBCCI), Aug 2022, Porto Alegre, Brazil. ⟨10.1109/SBCCI55532.2022.9893216⟩. ⟨hal-03689837⟩
140 Consultations
188 Téléchargements

Altmetric

Partager

More