Communication Dans Un Congrès Année : 2022

Expectation-Maximization Based Defense Mechanism for Distributed Model Predictive Control

Résumé

Controlling large-scale systems sometimes requires decentralized computation. Communication among agents is crucial to achieving consensus and optimal global behavior. These negotiation mechanisms are sensitive to attacks on those exchanges. This paper proposes an algorithm based on Expectation Maximization to mitigate the effects of attacks in a resource allocation based distributed model predictive control. The performance is assessed through an academic example of the temperature control of multiple rooms under input power constraints.
Fichier principal
Vignette du fichier
article.pdf (729.2 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03723298 , version 1 (14-07-2022)

Identifiants

  • HAL Id : hal-03723298 , version 1

Citer

Rafael Accácio Nogueira, Romain Bourdais, Simon Leglaive, Hervé Guéguen. Expectation-Maximization Based Defense Mechanism for Distributed Model Predictive Control. 9th IFAC Conference on Networked Systems (NecSys22), Jul 2022, Zürich, Switzerland. ⟨hal-03723298⟩
91 Consultations
96 Téléchargements

Partager

More