Bayesian sequential design of computer experiments to estimate reliable sets - CentraleSupélec
Pré-Publication, Document De Travail (Working Paper) Année : 2022

Bayesian sequential design of computer experiments to estimate reliable sets

Résumé

We consider an unknown multivariate function representing a system-such as a complex numerical simulator-taking both deterministic and uncertain inputs. Our objective is to estimate the set of deterministic inputs leading to outputs whose probability (with respect to the distribution of the uncertain inputs) to belong to a given set is controlled by a given threshold. To solve this problem, we propose a Bayesian strategy based on the Stepwise Uncertainty Reduction (SUR) principle to sequentially choose the points at which the function should be evaluated to approximate the set of interest. We illustrate its performance and interest in several numerical experiments.
Fichier principal
Vignette du fichier
raal-rsi-paper.pdf (565.86 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03835704 , version 1 (01-11-2022)
hal-03835704 , version 2 (12-07-2023)
hal-03835704 , version 3 (07-11-2023)
hal-03835704 , version 4 (31-05-2024)
hal-03835704 , version 5 (17-07-2024)
hal-03835704 , version 6 (19-08-2024)

Licence

Identifiants

Citer

Romain Ait Abdelmalek-Lomenech, Julien Bect, Vincent Chabridon, Emmanuel Vazquez. Bayesian sequential design of computer experiments to estimate reliable sets. 2022. ⟨hal-03835704v1⟩
400 Consultations
241 Téléchargements

Altmetric

Partager

More