Marginal MAP estimation of a Bernoulli-Gaussian signal: continuous relaxation approach
Résumé
We focus on recovering the support of sparse signals for sparse inverse problems. Using a Bernoulli-Gaussian prior to model sparsity, we propose to estimate the support of the sparse signal using the so-called Marginal Maximum a Posteriori estimate after marginalizing out the values of the nonzero coefficients. To this end, we propose an Expectation-Maximization procedure in which the discrete optimization problem in the M-step is relaxed into a continuous problem. Empirical assessment with simulated Bernoulli-Gaussian data using magnetoencephalographic lead field matrix shows that this approach outperforms the usual l0 Joint Maximum a Posteriori estimation in Type-I and Type-II error for support recovery, as well as in SNR for signal estimation.
Origine | Fichiers éditeurs autorisés sur une archive ouverte |
---|