Marginal MAP estimation of a Bernoulli-Gaussian signal: continuous relaxation approach - CentraleSupélec
Communication Dans Un Congrès Année : 2023

Marginal MAP estimation of a Bernoulli-Gaussian signal: continuous relaxation approach

Résumé

We focus on recovering the support of sparse signals for sparse inverse problems. Using a Bernoulli-Gaussian prior to model sparsity, we propose to estimate the support of the sparse signal using the so-called Marginal Maximum a Posteriori estimate after marginalizing out the values of the nonzero coefficients. To this end, we propose an Expectation-Maximization procedure in which the discrete optimization problem in the M-step is relaxed into a continuous problem. Empirical assessment with simulated Bernoulli-Gaussian data using magnetoencephalographic lead field matrix shows that this approach outperforms the usual l0 Joint Maximum a Posteriori estimation in Type-I and Type-II error for support recovery, as well as in SNR for signal estimation.
Fichier principal
Vignette du fichier
Barbault23.pdf (319.33 Ko) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte

Dates et versions

hal-04383978 , version 1 (10-01-2024)

Identifiants

  • HAL Id : hal-04383978 , version 1

Citer

Pierre Barbault, Matthieu Kowalski, Charles Soussen. Marginal MAP estimation of a Bernoulli-Gaussian signal: continuous relaxation approach. EUSIPCO 2023 - the 31st European Signal Processing Conference, Sep 2023, Helsinki, Finland. pp.1833-1837. ⟨hal-04383978⟩
112 Consultations
49 Téléchargements

Partager

More