Gaussian process interpolation with conformal prediction: methods and comparative analysis - CentraleSupélec
Communication Dans Un Congrès Année : 2024

Gaussian process interpolation with conformal prediction: methods and comparative analysis

Résumé

This article advocates the use of conformal prediction (CP) methods for Gaussian process (GP) interpolation to enhance the calibration of prediction intervals. We begin by illustrating that using a GP model with parameters selected by maximum likelihood often results in predictions that are not optimally calibrated. CP methods can adjust the prediction intervals, leading to better uncertainty quantification while maintaining the accuracy of the underlying GP model. We compare different CP variants and introduce a novel variant based on an asymmetric score. Our numerical experiments demonstrate the effectiveness of CP methods in improving calibration without compromising accuracy. This work aims to facilitate the adoption of CP methods in the GP community.
Fichier principal
Vignette du fichier
lod2024_pion_vazquez.pdf (707.79 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Licence
Copyright (Tous droits réservés)

Dates et versions

hal-04634707 , version 1 (10-07-2024)

Licence

Copyright (Tous droits réservés)

Identifiants

  • HAL Id : hal-04634707 , version 1

Citer

Aurélien Pion, Emmanuel Vazquez. Gaussian process interpolation with conformal prediction: methods and comparative analysis. LOD 2024, 10th International Conference on Machine Learning, Optimization, and Data Science, Sep 2024, Castiglione della Pescaia Grosseto Italy, Italy. ⟨hal-04634707⟩
160 Consultations
67 Téléchargements

Partager

More