Inverse parametric convex programming problems via convex liftings - CentraleSupélec
Communication Dans Un Congrès Année : 2014

Inverse parametric convex programming problems via convex liftings

Résumé

The present paper introduces a procedure to recover an inverse parametric linear or quadratic programming problem from a given liftable polyhedral partition over which a continuous piecewise affine function is defined. The solution to the resulting parametric linear problem is exactly the initial piecewise affine function over the given original parameter space partition. We provide sufficient conditions for the existence of solutions for such inverse problems. Furthermore, the constructive procedure proposed here requires at most one supplementary variable in the vector of optimization arguments. The principle of this method builds upon an inverse map to the orthogonal projection, known as a convex lifting. Finally, we show that the theoretical results has a practical interest in Model Predictive Control (MPC) design. It is shown that any linear Model Predictive Controller can be obtained through a reformulated MPC problem with control horizon equal to two prediction steps.
Fichier principal
Vignette du fichier
IFACWC14_vf.pdf (815.48 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01086492 , version 1 (22-05-2015)

Identifiants

Citer

Ngoc Anh Nguyen, Sorin Olaru, Pedro Rodriguez-Ayerbe, Morten Hovd, Ion Necoara. Inverse parametric convex programming problems via convex liftings. 19th World Congress of the International Federation of Automatic Control - IFAC 2014, Aug 2014, Cape Town, South Africa. ⟨10.3182/20140824-6-ZA-1003.02364⟩. ⟨hal-01086492⟩
121 Consultations
314 Téléchargements

Altmetric

Partager

More